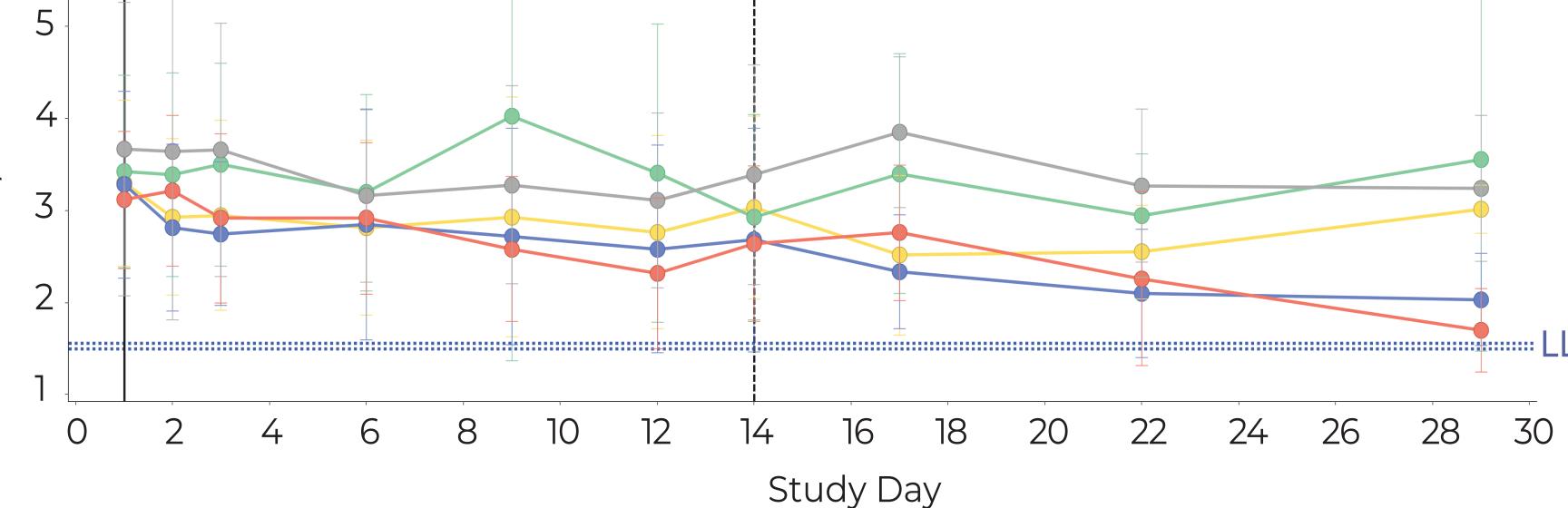

- KIT (CD117) signaling. The inhibition of KIT signaling holds therapeutic potential for mast-cell driven

- long circulating half-life

	Bioche	Cellular		
Kinase Target	K _D (nM)	HTRF KIT IC ₅₀ (nM)	Multiple (nM)	
KIT	1.5	16.1	5.0 ¹ – 7.9 ²	
CSF1R	33	56	>3000 ³ – >10000 ²	
PDGFRa	NT	2710	NT	
PDGFRβ	34	737	>30004	
ABL1	NT	NT	>100002	


- placebo

		Part 2: MAD					
Characterist	ic	Placebo (N = 8)	THB335 21 mg (N = 6)	THB335 41 mg (N = 6)	THB335 82 mg (N = 6)	THB335 164 mg (N = 6)	
Age (years)	Median	53.0	55.5	51.5	58.0	56.0	
Sex, n (%)	Female Male	8 (100%) 0 (0%)	6 (100%) 0 (0%)	3 (50%) 3 (50%)	6 (100%) 0 (0%)	6 (100%) 0 (0%)	
Race, n (%)	White Black /African American	7 (87.5%) 1 (12.5%)	6 (100%) 0 (0%)	5 (83.3%) 1 (16.7%)	6 (100%) 0 (0%)	5 (83.3%) 1 (16.7%)	
Ethnicity, n (%)	Hispanic or Latino Not Hispanic or Latino	6 (75%) 2 (25%)	6 (100%) 0 (0%)	2 (33.3%) 4 (66.7%)	6 (100%) 0 (0%)	6 (100%) 0 (0%)	
BMI (kg/m²)	Mean	27.7	28.1	28.3	26.3	28.7	

First-in-human Study of THB335, an Oral Small Molecule Inhibitor of Wild Type KIT Receptor Tyrosine Kinase: Initial Safety, Pharmacokinetics (PK), and Pharmacodynamics (PD) Results from Single Ascending and Multiple Ascending Dose Cohorts

Nathan Bachtell¹, Sherri Smith¹, Sujatha Kumar¹, Amy DiRico¹, Tess Schmalbach¹, Sammie Rivera¹, Ted Snyder¹, Edward Conner¹ ¹Third Harmonic Bio, Cambridge, MA

MAD Pharmacokinetics

- SAD PK data (not shown) demonstrated dose-dependent increases in drug exposure, with half-life of approximately 40 hours, enabling once daily dosing
- MAD PK data showed doseproportional increases in exposure that exceed the KIT IC90 at doses of 41 mg daily and higher
- Mild positive food effect
- 41% variability coefficient

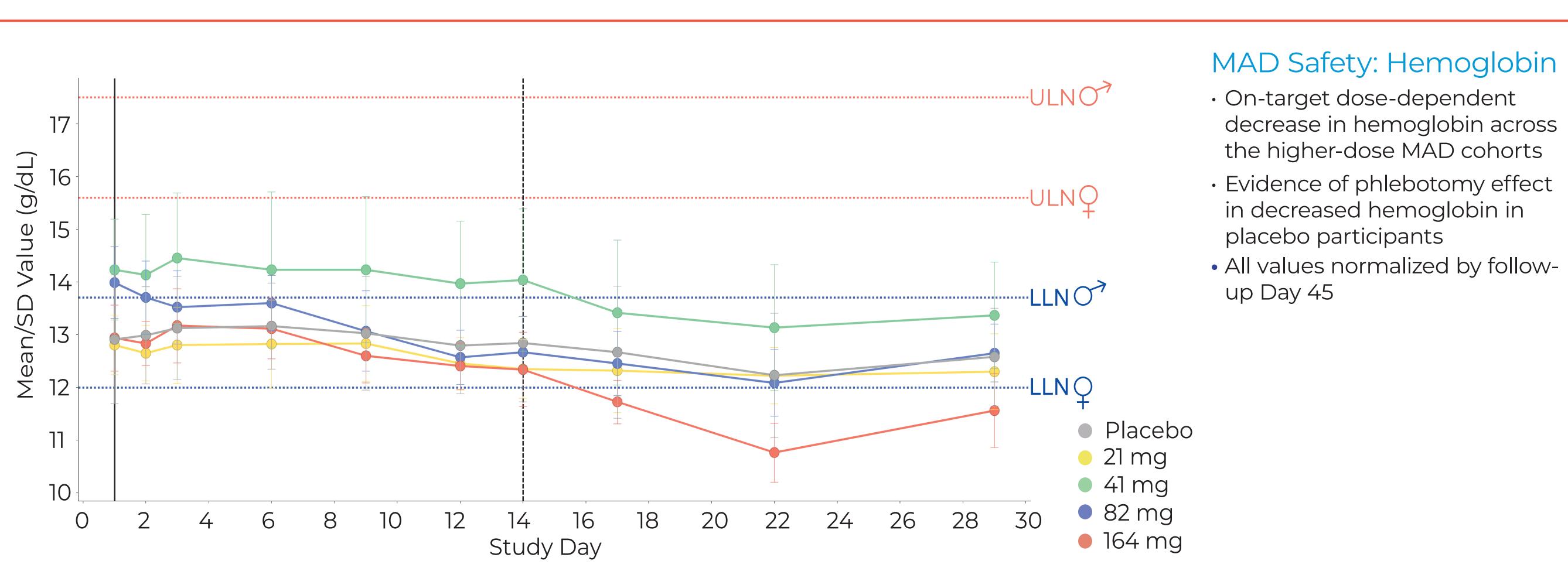
Serum Tryptase

Stem Cell Factor

• Dose dependent increases in SCF

observed with similar increases

for 82 and 164 mg cohorts


- Dose-dependent decreases in serum tryptase across the MAD cohorts with mean changes from baseline at Day 15 ranging from -13 to -84%
- Peak tryptase reductions occurred at Day 15 across cohorts, indicating maximal PD effect at one day post-dosing completion

Placebo
21 mg
•
41 mg
82 mg
164 mg

	Ν	

MAD Safety: Neutrophils (ANC)

- Expected on-target dosedependent reductions in ANC
- All values normalized by follow-up Day 38
- Placebo • 21 mg
- 41 mg
- 82 mg
- 164 mg

MAD Treatment Emergent Adverse Events in \geq 2 Participants

Preferred Term of Verbatim	Part 2: MAD					Total
Preierred Term of Verbaum	21 mg THB335	41 mg THB335	82 mg THB335	164 mg THB335	Placebo	TOLAI
Hemoglobin decreased	Ο	0	2	5	0	7
Hair color changes	Ο	0	3	4	0	7
White blood cell count decreased	Ο	1	1	2	0	4
Neutrophil count decreased	Ο	1	0	2	0	3
Transaminases increased	Ο	0	0	٦	2	3
Dermatitis contact	1	0	0	0	1	2
Headache	0]	0	0]	2

MAD Adverse Events Summary

- Elevated AST and ALT observed in 3 participants: 2 on placebo and 1 active participants and values decline by Day 15, when THB335 exposure remains high
- cohort

THB335 Phase 1 Clinical Trial Results Summary

- healthy volunteer population.
- exceeding the KIT IC90 at daily doses of 41 mg and higher.
- clinical studies.
- 2 planning is underway.

ferences ¹J. A. Gilreath, L. Tchertanov, M. W. Deininger. Novel approaches to treating advanced systemic mastocytosis. Clin Pharmacol 2019;11:77-92. ²G. C. Parry, A. Ray, et al. Efficacy of THB001, a Potent and Selective Oral Small Molecule Inhibitor of Wild Type KIT Receptor Tyrosine Kinase, in a Rat Passive Cutaneous Anaphylaxis Model. Poster Presentation (#155); February 2023, AAAAI, San Antonio, TX. ³U.S. Food and Drug Administration. Toxicity Grading Scale for Healthy Adult and Adolescent Volunteers Enrolled in Preventive Vaccine Clinical Trials: Guidance for Industry (Docket No. FDA-2005-D-0272). Silver Spring, MD: U.S. Department of Health and Human Services; 2007. https://www.fda.gov/media/73679/download. Accessed February 23, 2025. 4 National Cancer Therapy Evaluation Program. Common Terminology Criteria for Adverse Events (CTCAE) v5.0 Quick Reference [PDF]. Bethesda, MD: National Cancer Institute; 2017. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_reference_5x7.pdf. Accessed February 23, 2025.

Abbreviations: AE = adverse event; ALT = alanine aminotransferase; ANC = absolute neutrophil count; AST = aspartate aminotransferase; BMI = body mass index; CSU = chronic spontaneous urticaria; DILI = drug induced liver injury; EC₅₀ = half maximal effective concentration; FE = food effect; HTRF = homogeneous time resolved fluorescence; IC50 = half maximal inhibitory concentration; IC90 = 90% inhibition concentration; KD = dissociation constant; LLN = lower limit of normal; MAD = multiple ascending doses; NCI CTCAE = National Cancer Institute Common Terminology Criteria for Adverse Events; NT = not tested; PD = pharmacodynamic; PK = pharmacokinetic; SAD = single ascending dose; SCF = stem cell factor; SD = standard deviation; ULN = upper limit of normal. Acknowledgements: Writing, graphic design, and poster production support were provided by Acumen Medical Communications, funded by Third Harmonic Bic

• Dose-dependent on-target KIT effects observed including mild, reversible, hair color changes in the higher dose cohorts

» 164 mg cohort AEs (1 in placebo, 1 in active) are largely consistent in time course and similar in magnitude between active and placebo

» Based on data review with DILI experts, transaminitis event in active participant not considered drug-related

Neutrophil count decreases observed in 1 participant (moderate) in 41 mg cohort and 2 participants (1 moderate, 1 severe) in the 164 mg cohort » All three participants had baseline neutrophil counts in the lower range of normal limits (below 3 \times 10⁹/L)

#673

» White blood cell count changes consistent with changes in neutrophil count

• Hemoglobin decreases observed in 2 participants (both moderate) in 82mg cohort and 5 participants (2 moderate and 3 severe) in the 164 mg

» Hemoglobin AEs graded using FDA preventative vaccine clinical trial guidance³ which directs using change from baseline or absolute value at

» Change from baseline, used by site primary investigator for AE grading, does not take phlebotomy effect into account » If absolute values used, then AEs would be Grade 1 or 2 and if NCI CTCAE criteria⁴ were used all would be Grade 1

Conclusions

• The Phase 1 study achieved its objectives of characterizing the pharmacokinetics, pharmacodynamics, safety, and tolerability of THB335 in a

• Consistent, dose-dependent increases in drug exposure and long half-life support once daily dosing and achieve high levels of target coverage,

• Dose-dependent decreases in serum tryptase (from -13 to -84%) observed along with dose-dependent increases in stem cell factor. • Safety profile demonstrates expected on-target adverse events consistent with KIT inhibition and may limit use of high dose (164mg) in future

• Moderate, sustained KIT inhibition may allow for evaluation of optimal therapeutic index to evaluate dose levels to determine if there is a range that allows for robust clinical efficacy in mast cell-mediated diseases while minimizing on-target KIT safety effects.

• THB335 has the potential to drive meaningful clinical benefit in patients living with mast-cell mediated diseases including CSU for which Phase